

Rattlesnake Creek Basin Modeling Scenarios

Division of Water Resources November 4, 2014

Overview

- Purpose of modeling evaluation
- Method of evaluation
- Model versions
- Overview of scenarios evaluated
- Model results
 - Basin-wide curtailment/reductions
 - Targeted curtailments
- Observations and discussion

Purpose of modeling evaluation

• To calculate the benefits of pumping reductions to streamflow [i.e. baseflow] and impacts on evapotranspiration and groundwater storage

• To help inform management decisions

To evaluate pumping impacts:

- Calculate water budget differences between two model runs:
 - baseline (historical pumping)
 - alternative pumping scenario

• Baseline: historical conditions for 1940-2007.

Model versions

- 7-layer model developed by Balleau:
 - Ran for baseline and scenario 11 to compare with 1-layer model (runtime: 5-12 hours)
- 1-layer model developed by SSPA from 7-layer model:
 - Functionally equivalent for calculating pumping impacts
 - Shorter runtimes allow exploring more alternatives (runtime: 30-60 minutes)
 - More detailed output allows calculating basin water budget
 - Used for initial evaluations presented here
- 1-layer model with alternative calibration with low evapotranspiration and recharge (SSPA)
 Kansa

GMD #5 Model Area

Rattlesnake Creek Basin Groundwater Points of Diversion

Scenario development

- DWR evaluated a wide range of pumping reduction scenarios including:
 - Basin-wide curtailments beginning in 1958 and 1990
 [1-2]
 - Basin-wide water use reductions [2.5 and 2.75]
 - Targeted curtailments near the stream [3-11]
 - Balleau response zones [7-9]
 - 1 and 2 mile corridors [10,11]
- All scenarios restrict only junior rights above Quivira intake
- All start restrictions in 1990 (except scenario 1)

Rattlesnake Creek Basin Scenarios 7, 8 and 9

Rattlesnake Creek Basin Scenarios 10 and 11

Additional scenarios examined

- 11-ML: 2-mi corridor with multi-layer model
- Delay pumping reductions to 2000
- Alternative 1-layer model calibration with lower ET and recharge
- 3: 1 mile corridor entire length
- 4: alluvial extent
- 5-6: Balleau response zones (from map; not coverage); replaced by 7-9

Streamflow response statistics evaluated

- Average baseflow increase for years 1998-2007
- Ratio of baseflow increase to pumping reduction
- Response time: lag between pumping reduction and baseflow increase

Presented scenarios Rattlesnake C Basin impacts 1998-2007 acre-feet/yr

scenario	Scenario definition	Δ pumping	Δ baseflow	$\Delta B cfs$	$\Delta B / \Delta P$	Δ storage	Δ et	
1	basinwide shutoff from 1958 on	(143,529)	42,053	58.0	29.3%	70,505	22,387	
2	basinwide shutoff from 1990 on	(143,529)	34,420	47.5	24.0%	76,837	18,007	
2.5	basinwide 50% pumping	(71,765)	13,366	18.4	18.6%	34,019	8,662	
2.75	basinwide 75% pumping	(35,882)	5,475	7.6	15.3%	18,200	4,265	
7	response zone >70%	(1,059)	661	0.9	62.4%	77	253	
8	response zone >40%	(9,701)	4,646	6.4	47.9%	1,442	2,597	
9	response zone >20%	(19,604)	8,326	11.5	42.5%	3,350	4,975	
10	RSC 1-mi corridor to Macksville	(3,932)	2,115	2.9	53.8%	410	1,094	
11	RSC 2-mi corridor to Macksville	(11,230)	5,560	7.7	49.5%	1,396	3,086	
Notes:	[1] Restrict selections to Rattlesnake C basin wells junior to Aug 15 1957 (USF&W File 7571).							
	[2] Scenario 1 selection begins Jan 1958 (str per 218); others begin Jan 1990 (str per 602).							
	[3] Scenarios are specified as input to preprocessor by scenario id and pump scaling factor.							

Pumping Impact on global water budget Scenario 2: basin-wide shutoff beginning 1990 250 200 Average annual flow rate (cfs) 150 100 50 0 -50 -100 -150 -200 -250 1985 1990 1995 2000 2005 2010 delta pumping delta et delta storage delta baseflow (cfs)

Pumping Impact on RS Basin water budget Scenario 2: basin-wide shutoff beginning 1990 250 200 Average annual flow rate (cfs) 150 100 50 0 (50)(100) (150)(200) (250)1985 1990 1995 2000 2005 2010 delta storage delta pumping delta et delta baseflow (cfs)

Scenario 2 variations: scale pumping basin-wide by 50% and 75%

• Rattlesnake Creek Basin impacts:

scenario	Scenario definition	Δ pumping	Δ baseflow	$\Delta B cfs$	$\Delta B/\Delta P$	Δ storage	Δ et
2	basinwide shutoff from 1990 on	(143,529)	34,420	47.5	24.0%	76,837	18,007
2.5	basinwide 50% pumping	(71,765)	13,366	18.4	18.6%	34,019	8,662
2.75	basinwide 75% pumping	(35,882)	5,475	7.6	15.3%	18,200	4,265

Scenarios 7, 8 and 9: Streamflow response zones

• Rattlesnake Creek Basin impacts

scenario	Scenario definition	Δ pumping	Δ baseflow	ΔB cfs	$\Delta B/\Delta P$	Δ storage	Δ et
7	response zone >70%	(1,059)	661	0.9	62.4%	77	253
8	response zone >40%	(9,701)	4,646	6.4	47.9%	1,442	2,597
9	response zone >20%	(19,604)	8,326	11.5	42.5%	3,350	4,975

Scenarios 10 and 11: 1- and 2-mi corridors

• Rattlesnake Creek Basin impacts:

scenario	Scenario definition	Δ pumping	Δ baseflow	$\Delta B cfs$	$\Delta B / \Delta P$	Δ storage	Δ et
10	RSC 1-mi corridor to Macksville	(3,932)	2,115	2.9	53.8%	410	1,094
11	RSC 2-mi corridor to Macksville	(11,230)	5,560	7.7	49.5%	1,396	3,086

Comparison of results of single and multi-layer models

- Scenario 11
- Global budget impacts:

scenario		$\Delta pumping$	$\Delta baseflow$	$\Delta baseflow$	$\Delta B / \Delta P$	$\Delta storage$	Δ ET ac-
id 🔽	Scenario definition [1,2,3]	ac-ft/y 🔻	ac-ft/y	cfs 💌	pct 💌	ac-ft/y 🔻	ft/yr 🔻
11	RSC 2-mi corridor to Macksville	(11,230)	5,729	7.9	51.0%	2,253	3,275
11 ML [4]	RSC 2-mi corridor to Macksville	(11,230)	5,464	8	48.7%	2,404	3,379
difference	[multi - single] layer versions	0	(265)	(0)	-2.4%	150	104

Pumping Impact on global water budget Scenario 11: 2-mi corridor shutdown to Macksville

Observations

- The single and multi-layer models are functionally equivalent for determining pumping impacts on streamflow.
- The GMD5 model shows that baseflow reductions due to junior pumping are significant
- Pumping reductions near the stream provides more effective streamflows benefits.
- Pumping shutoff scenarios take two to three years to produce a significant baseflow response.

Thanks!

