Quivira Initial Impairment Investigation Report Presentation St. John, KS December 10, 2015

Kansas Department of Agriculture

Why are we here?

- Provide a summary of the initial report
- Answer questions
- Listen to your input

Where do we go from here?

- Take comments, prepare a second draft & then a final report
 - Comment period on initial draft ~ 90 day review
 - KDA-DWR will provide a second draft ~ 30 days
 - Additional input ~ 15 days
 - Finalize report
- We are prepared to begin working with water users in the basin on a workable solution, even during the finalization of the report
- Legislative tool available to allow for augmentation as a remedy
- No administration of groundwater rights in 2016

Questions we have heard in response to the draft

- 1. How did the USFWS Refuge water right get certified?
- 2. How did you arrive at the depletions of baseflow of 30,000-60,000 acre-feet for the period 1995-2007?
- 3. How did you determine an impairment amount of 3,000-5,000 acre-feet on a regular basis?

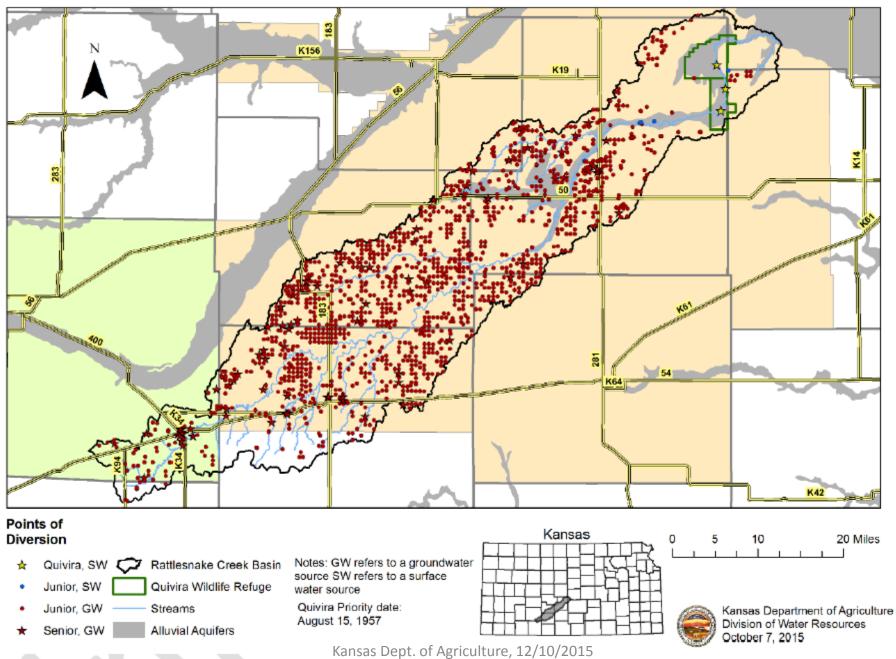
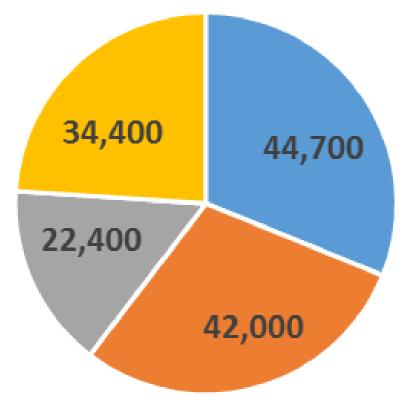
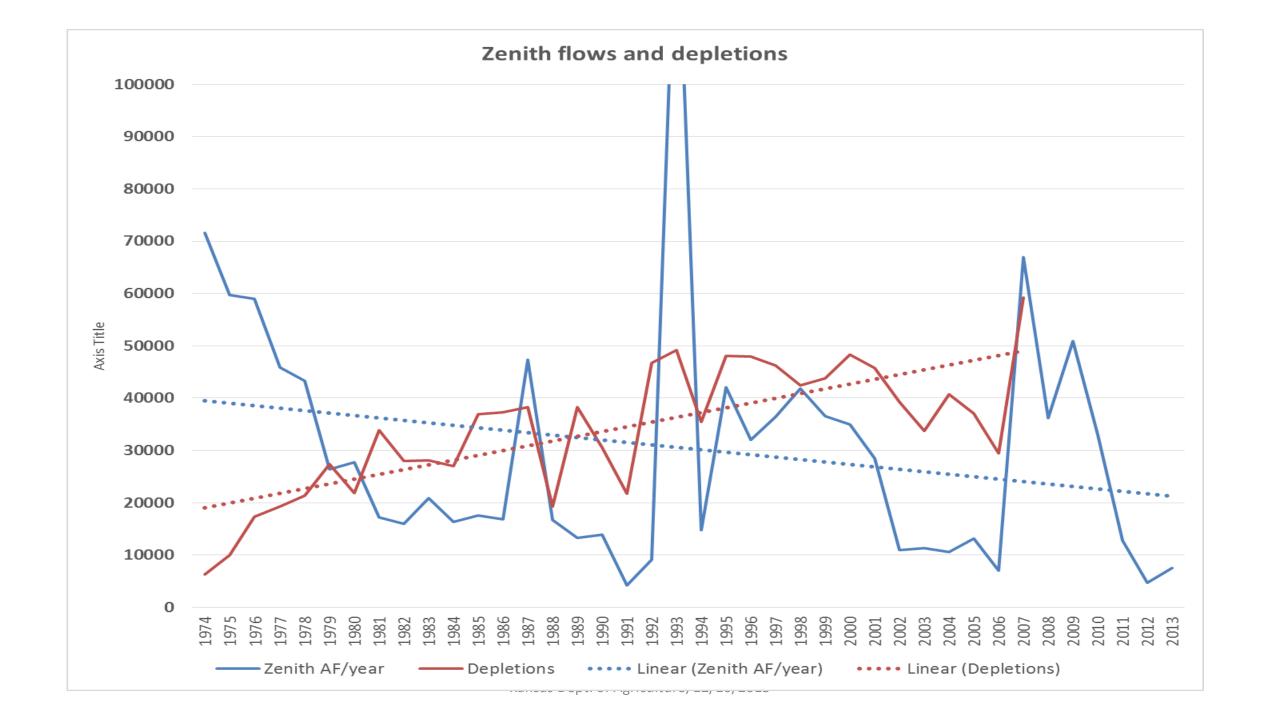
How did the USFWS Refuge water right get certified?

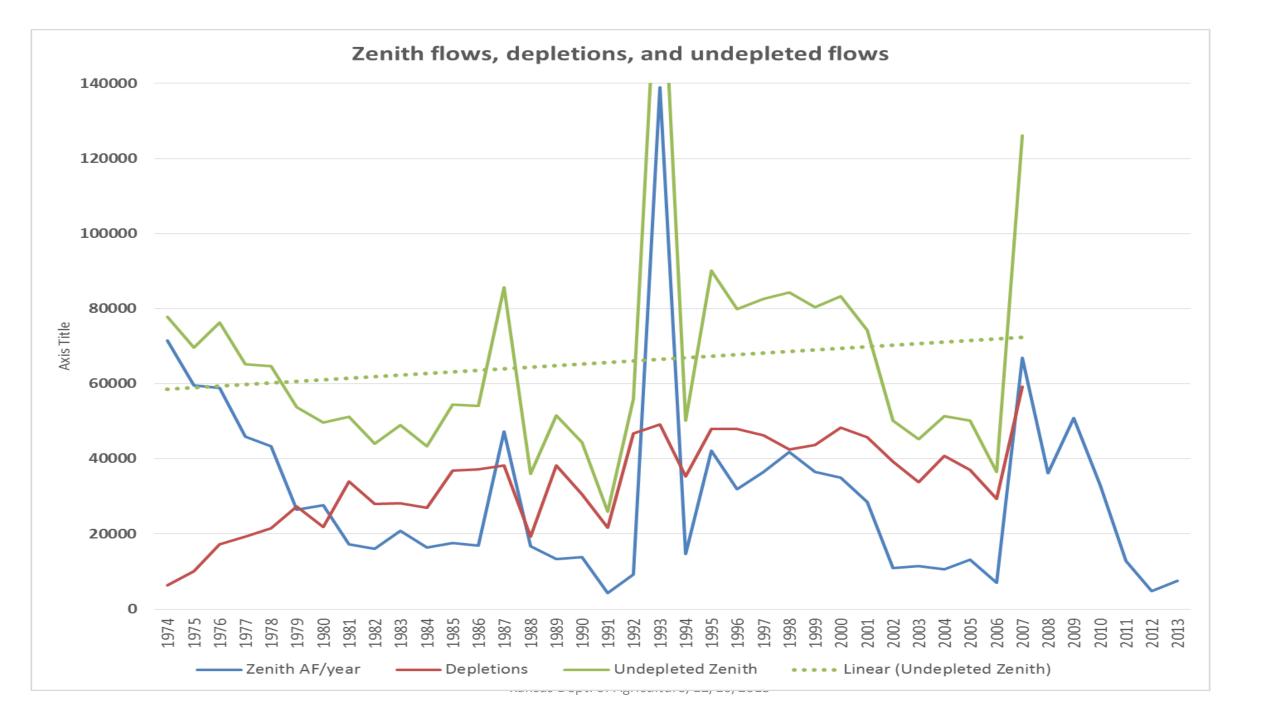
- Water Right File Number 7,571
- Filed: 1957
- Year of Record: 1987
- Certified: 1996
- Maximum Rate of Diversion: 300 cfs
- Maximum Annual Quantity: 14,632 AF
 - Diversion
 - Evaporation from Little Salt Marsh

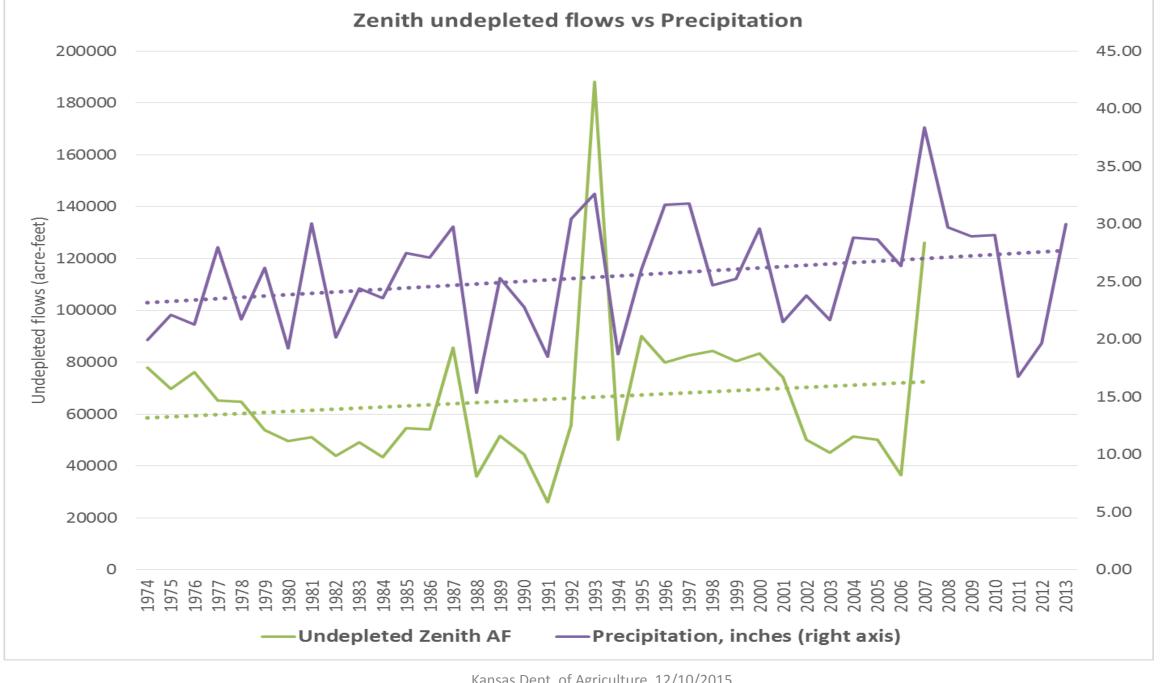
How did you arrive at the depletions of baseflow of 30,000-60,000 acre-feet for the period 1995-2007?

Determined by use of the GMD 5 groundwater model

Rattlesnake Creek Basin Groundwater and Suface Water Rights


Figure 2 - Rattlesnake Creek Basin map of water rights


Impacts of 143,500 AF of junior groundwater pumping

- Reduction in groundwater storage
 Reduction in streamflow
- Reduction in phreatophtye ET
 Inflows from neighboring basins

How did you determine an impairment amount of 3,000-5,000 acre-feet on a regular basis?

Purpose of the analysis

- To use the best data and tools available to understand the magnitude and frequency of the water shortages experienced by the Refuge caused by junior groundwater pumping
- To provide a simple and straightforward methodology for defining the Refuge's historical water shortages caused by junior groundwater pumping
- To facilitate planning and action by the basin community to solve the resource problem

Elements of the analysis

- Within their water right, how much did the Refuge need and when did they need it?
 - Generalized current operations plan from the Service
 - Refuge diversion records
- How much water was there and when was it available?
 - USGS Gage at Zenith monthly records
- How much water would have been there but for junior groundwater pumping?
 - GMD5 Model

Refuge needs within its water right

May, 2015 – Attachment 5 of Initial Report

Table 1. Significant annual events largely considered in determining seasonal water needs to accomplish management objectives of Quivira National Wildlife Refuge.

Jan-Feb	Mar	-Apr	May-Jun		Jul-Sep	Oct-Nov	Dec
	MA	NAGEMENT	TO SUPPORT WILDLIFE FOO	DD & COVER	REQUIREMENTS		
Use water where neede	ed to provide/m	aintain semi _l	permanent wetland habitat.				
000000000000000000	od select units to to produce wildl		y soils that				
	and growth	of desired p Drawdown d	s for suitable germination lants used for wildlife food dates are based on				
		survival, gr	ect wetland units to support owth, and seed production of d wildlife food plants.	of	After seeds mature, gradually increase water levels in wetlands to coincide with the food and cover needs of target species.		
CHRONOL		ANNUAL EV	ENTS OR WHEN LIFE REQUI	REMENTS N	IEED TO BE AVAILABLE	FOR SPECIES USE	
Waterfowl and bald eagle wintering habitat is provided when open water is	Peak spring waterfowl migration (habitat flooded <15 inches).	Main spring shorebird r (habitat flo inches and	migration poded <6	mi flo	ain fall shorebird igration (habitat ooded <6 inches and udflat).	Peak fall waterfow migration (habitat flooded <15 inches).	I
available (generally where flooded deep and/or where flow prevents ice formation).	Endanger whooping spring mi (shoreline flooded <	g crane gration e & habitat	Breeding-related activities waterbirds that require flot food and/or cover resource state-threatened snowy pendangered interior least species in need of conservall, black tern).	ooded habita es, such as f lover, the tern, and fo	at for for the or state	Endangered whooping crane fall migration (shoreline and habitat flooded <1 ft).	

Refuge needs within its water right

May, 2015 – Attachment 5 of Initial Report

Table 3. Comparison of Rattlesnake Creek surface water use Scenarios 1 and 2 for Quivira NWR.

		Seasonal Water Use Estimates (Acre-Feet)											
Scenario	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
1	98	36	1,1	.15	1,0	62		2,117		1,7	'81	684	7,746
2	3,144	7,427		2,8	95	4,053			5,8	881	23,400		

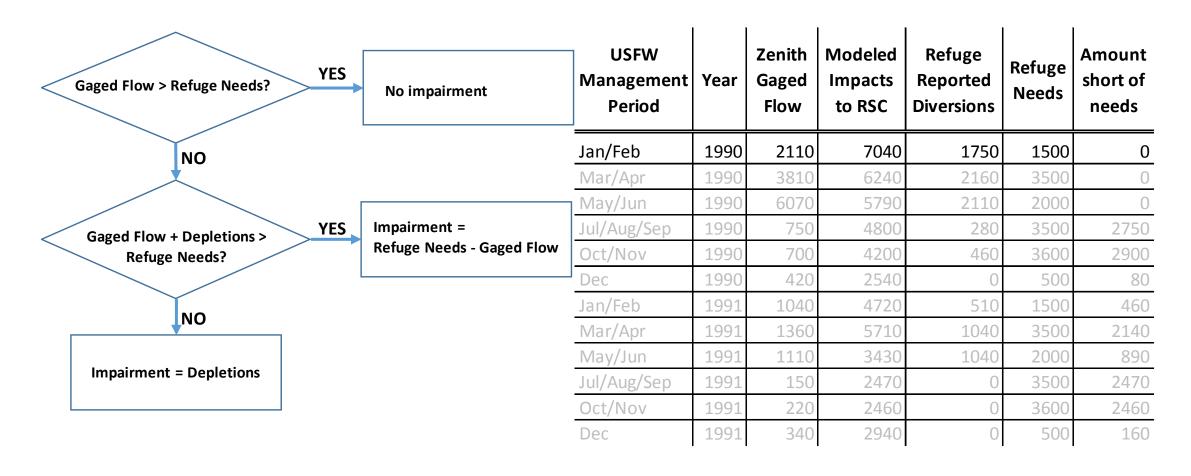
Table 4. Seasonal Rattlesnake Creek surface water need estimates for Quivira NWR, given the current water right.

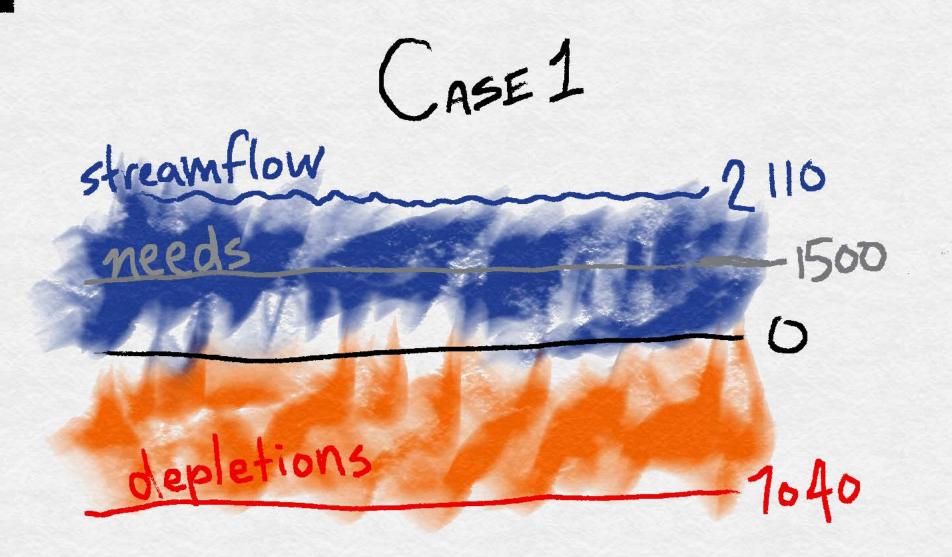
Seasonal Water Use (Acre-Feet)							
Jan-Feb	Jan-Feb Mar-Apr May-Jun Jul-Sep Oct-Nov Dec						
1,500	3,500	2,000	3,500	3,632	500	14,632	

Seasonal water availability at the Refuge

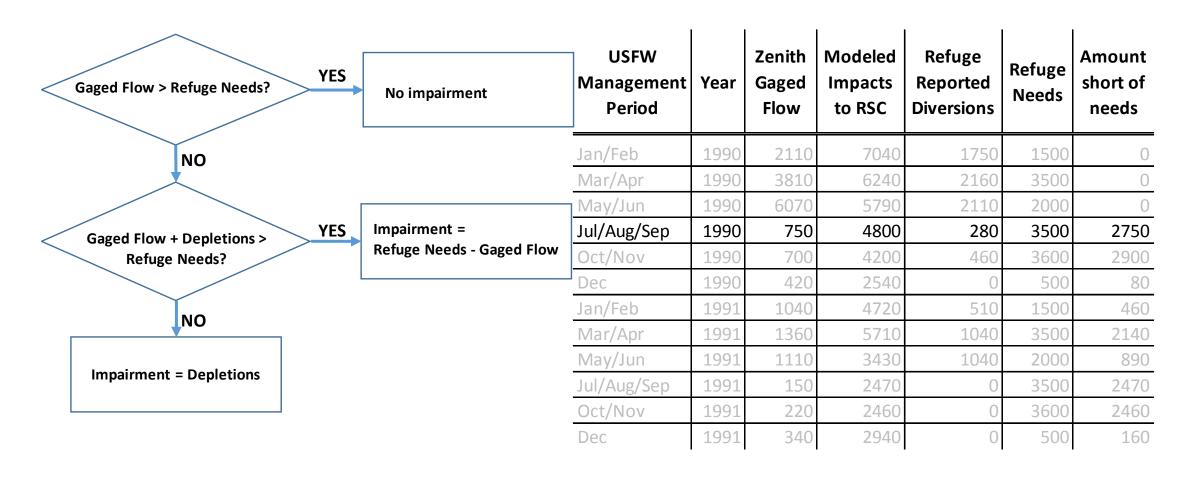
- USGS gage at Zenith
 - About a mile upstream of the Refuge
 - Monthly data for 1974 2007
 - Combined into the Service's seasonal periods
 - Table 2 and Attachment 6 of Initial Report

USFW Management Period	Year	Zenith Gaged Flow	Modeled Impacts to RSC	Refuge Reported Diversions	Refuge Needs
Jan/Feb	2003	1860	7340	1180	1500
Mar/Apr	2003	4720	9640	320	3500
May/Jun	2003	2770	5690	0	2000
Jul/Aug/Sep	2003	650	4040	120	3500
Oct/Nov	2003	840	4290	40	3600
Dec	2003	540	2800	80	500
Jan/Feb	2004	1050	5140	970	1500
Mar/Apr	2004	2300	6270	2840	3500
May/Jun	2004	1500	5430	370	2000
Jul/Aug/Sep	2004	2960	13070	4370	3500
Oct/Nov	2004	1690	7640	550	3600
Dec	2004	1080	3220	580	500
Jan/Feb	2005	2490	7820	2130	1500
Mar/Apr	2005	2390	5630	130	3500
May/Jun	2005	3000	7280	0	2000
Jul/Aug/Sep	2005	3620	8230	1660	3500

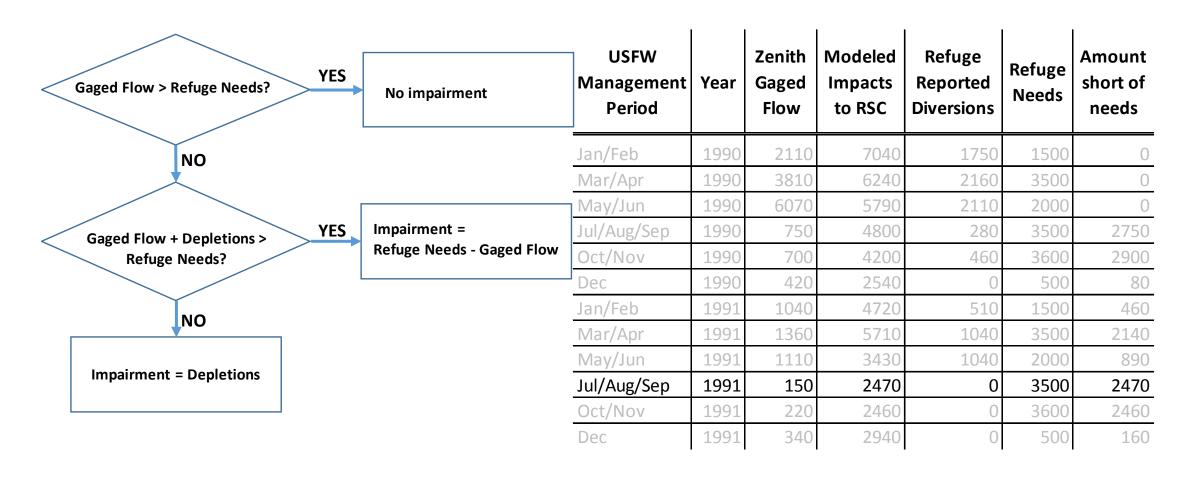

Kansas Dept. of Agriculture, 12/10/2015


Seasonal reduction to water availability at the Refuge caused by junior groundwater pumping

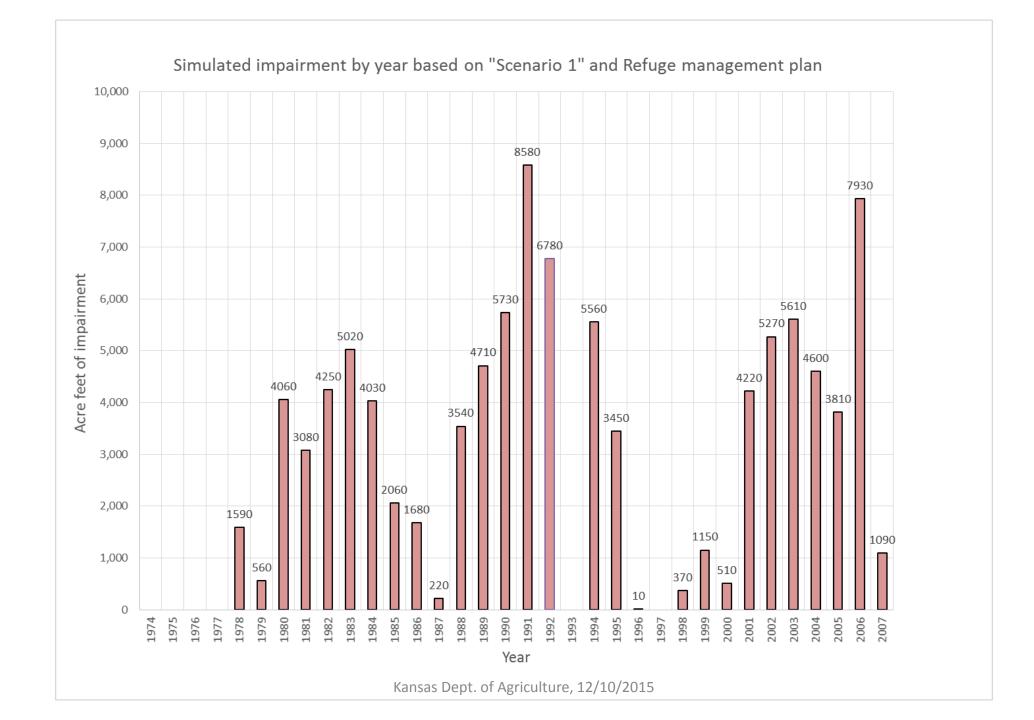
- GMD5 model simulations
 - "Depletions to streamflow"
 - "Scenario 1" no pumping junior to the Refuge (1957)
 - how much more streamflow would have been at the Zenith gage if there had been no pumping junior to the Refuge's 1957 water right.
- Depletions combined to Service's seasons


USFW Management Period	Year	Zenith Gaged Flow	Modeled Impacts to RSC	Refuge Reported Diversions	Refuge Needs
Jan/Feb	2003	1860	7340	1180	1500
Mar/Apr	2003	4720	9640	320	3500
May/Jun	2003	2770	5690	0	2000
Jul/Aug/Sep	2003	650	4040	120	3500
Oct/Nov	2003	840	4290	40	3600
Dec	2003	540	2800	80	500
Jan/Feb	2004	1050	5140	970	1500
Mar/Apr	2004	2300	6270	2840	3500
May/Jun	2004	1500	5430	370	2000
Jul/Aug/Sep	2004	2960	13070	4370	3500
Oct/Nov	2004	1690	7640	550	3600
Dec	2004	1080	3220	580	500
Jan/Feb	2005	2490	7820	2130	1500
Mar/Apr	2005	2390	5630	130	3500
May/lun	2005	3000	7220	\cap	2000

Simulated historical impairment


Simulated historical impairment

CASE 2


needs Impairment streamflow

Simulated historical impairment

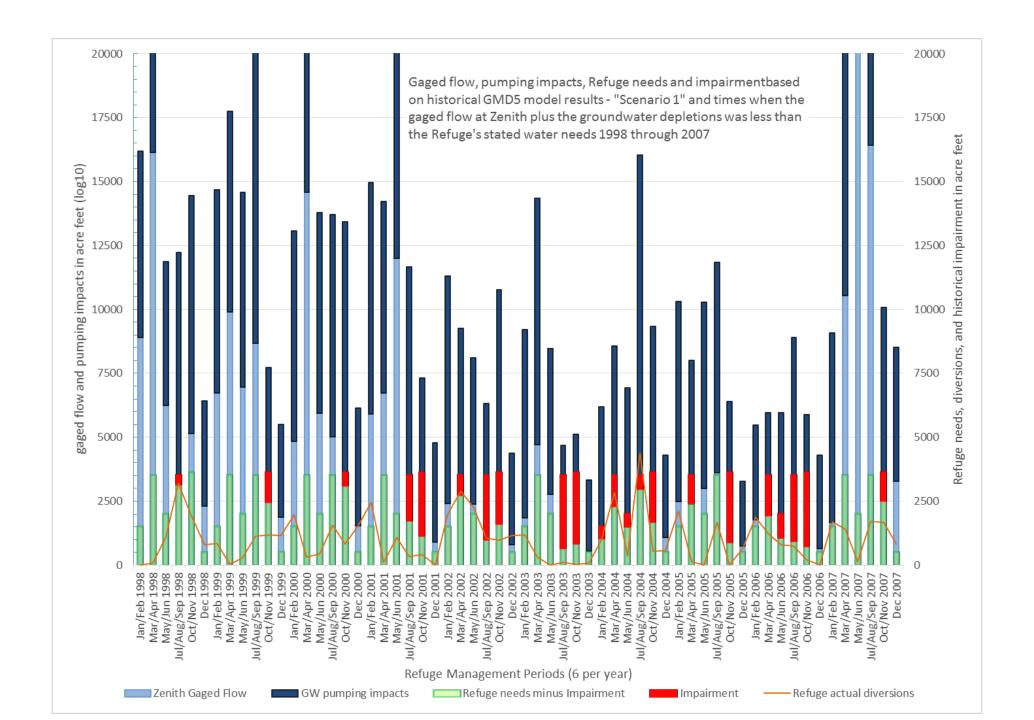
CASE 3

needs streamflow Impairment

The impairment resolution process Draft Schedule

June 29, 2000		Partnership submits RSC Management Plan to address Quivira shortages
April 8, 2013		Impairment complaint filed
Docombox 2, 2015		Initial Danagt is published
December 2, 2015		Initial Report is published
December 10, 2015		Begin 90 day review period
we are here		Begin woking on remedy
		No water right administration in 2016 for this impairment
	91 days	
March 11, 2016		End of review period for Initial Report
	34 days	
April 15, 2016		Second draft initial report
	30 days	
May 15, 2016		Final report is published
	90 days	
August 15, 2016		Submit Basin plan to implement remedy
	34 days	
September 19, 2016		KDA responds to the acceptability to the Basin Plan
	30 days	
October 19, 2016		Basin Plan is finalized (if reforms are necessary)

Developing a remedy


- While KDA-DWR has not developed a remedy, our modeling and impairment analysis suggests the following:
 - Due to the limited amount of pumping near the stream and lagtime between pumping shutoffs and stream benefits, "real-time administration" will not be sufficient to prevent remedy.
 - The plan will likely need to include long-term cuts in groundwater pumping to stop and reverse the upward trend in depletions.
 - Augmentation can be used to reduce the need for the long-term pumping cuts
- DWR will assist the basin in developing and reviewing alternatives

Rattlesnake Creek Basin impacts

average: 1998-2007 acre-feet/yr

scenario	Scenario definition	Δ pumping	Δ baseflow	ΔB cfs	ΔΒ/ΔΡ	Δ storage	Δ et			
1	basinwide shutoff from 1958 on	(143,529)	42,053	58.0	29.3%	70,505	22,387			
2	basinwide shutoff from 1990 on	(143,529)	34,420	47.5	24.0%	76,837	18,007			
2.5	basinwide 50% pumping	(71,765)	13,366	18.4	18.6%	34,019	8,662			
2.75	basinwide 75% pumping	(35,882)	5,475	7.6	15.3%	18,200	4,265			
7	response zone >70%	(1,059)	661	0.9	62.4%	77	253			
8	response zone >40%	(9,701)	4,646	6.4	47.9%	1,442	2,597			
9	response zone >20%	(19,604)	8,326	11.5	42.5%	3,350	4,975			
10	RSC 1-mi corridor to Macksville	(3,932)	2,115	2.9	53.8%	410	1,094			
11	RSC 2-mi corridor to Macksville	(11,230)	5,560	7.7	49.5%	1,396	3,086			
Notes:	: [1] Restrict selections to Rattlesnake C basin wells junior to Aug 15 1957 (USF&W File 7571).									
	[2] Scenario 1 selection begins Jan 1958 (str per 218); others begin Jan 1990 (str per 602).									
	[3] Scenarios are specified as input to preprocessor by scenario id and pump scaling factor.									

Questions?

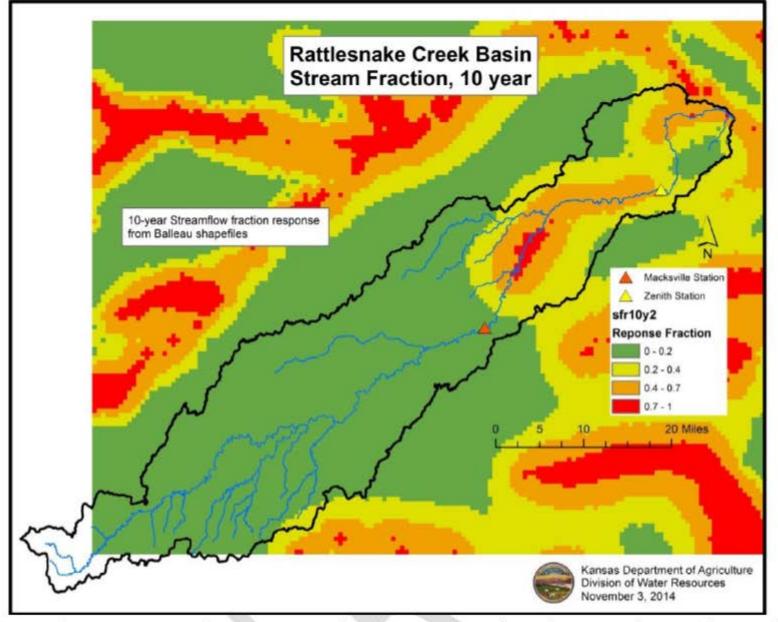


Fig. A4. Map of 10-year streamflow response, the fraction of Rattlesnake streamflow at the Zenith gage depleted by ten years of pumping, evaluated at each model grid cell within the mapped area. (See also Fig. 51, Balleau et al., 2010)